NOTES

$(NH_4)_2SiP_4O_{13}$: un nouvel exemple de silicium hexacoordonné. Préparation chimique et données cristallographiques

M. T. AVERBUCH-POUCHOT ET A. DURIF

Laboratoire des Rayons X du CNRS, 166 X; Centre de Tri, 38042-Grenoble Cedex, France

Received March 9, 1976

 $(NH_4)_2SiP_4O_{13}$ is triclinic (*P*1) with a bimolecular unit cell. a = 15.14(1), b = 7.697(5), c = 4.869(3)Å. $\alpha = 97.90(1)$, $\beta = 96.51(1)$, $\gamma = 83.92(1)^\circ$. We describe the chemical preparation and give crystal data for this compound, a new example of hexacoordinated silicon.

Preparation chimique

Ce sel se prépare facilement en calcinant durant une nuit à 350°C environ 500 mmg de laine de silice dans un gros excès de phosphate diammonique. Les cristaux obtenus sous forme de prismes à section rectangulaire sont insolubles dans l'eau et s'extrayent facilement du flux par lavage à l'eau chaude.

Etude cristallographique

L'étude des diagrammes de Weissenberg montre que ce sel est triclinique. Un affinement des dimensions de la maille par une méthode de moindres carrés, effectué à partir de données angulaires recueillies à l'aide d'un diffractomètre Philips Norelco ($\lambda Cu\alpha_1\alpha_2$) opérant à vitesse lente ($1/8^{\circ}$ (θ)/m) conduit aux dimensions

$$a = 15.14(1), b = 7.697(5), c = 4.869(3) \text{ Å}$$

 $\alpha = 97.90(1), \beta = 96.51(1), \gamma = 83.92(1)^{\circ}$

pour une maille renfermant deux unités formulaires. Le Tableau I donne le dépouillement du diagramme de poudre de ce composé. Les intensités données sont les hauteurs des pics au dessus du fond continu. L'intensité

Copyright © 1976 by Academic Press, Inc. All rights of reproduction in any form reserved. Printed in Great Britain extrêmement forte de la réflexion 200 n'a pas permis une évaluation correcte de sa valeur. Les intensités relatives données dans ce tableau sont dont rapportées à la réflexion 401.

Discussion

La structure cristalline détaillée de ce sel (1) montre qu'il s'agit d'un composé constitué d'un anion plan bidimensionnel: SiP₄O₁₃ formé par un réseau de groupements tétrapolyphosphates: P₄O₁₃ reliés entre eux par des atomes de silicium. La Fig. 1 donne une représentation schématique d'un tel plan. Les atomes de silicium ont chacun six voisins oxygène avec une distance moyenne Si-O de 1.771(2) Å, très proche des moyennes observées par Liebau (2) dans d'autres composés où le silicium possède la même coordination. Ces plans anioniques sont disposés perpendiculairement à la direction \vec{a} du cristal à des distances d'environ 7.5 Å les uns des autres. La cohésion entre ces plans est assurée par les atomes d'ammonium. Cet arrangement lamellaire se reflète bien dans le comportement mécanique des cristaux qui se clivent très

NOTES

TABLEAU I

hkl	d_{calc}	d_{obs}	I	h k l	d _{cate}	d_{obs}	Ι				
100	14.98			510	2.704	2.702	14				
010	7.59			501	2.664						
200	7.49	7.48	FFF	4 I 1	2.647						
110	7.04			51 I	2.643						
1 T O	6.53	6.55	18	221	2.638	7 627	20				
210	5.59			411	2.637)	2.037	20				
210	5.10	5.11	64	221	2.622						
300	4.994			4 2 I	2.616						
001	4.797			420	2.551	—					
T O 1	4.708	—		130	2.534	2 522)	3				
101	4.442			030	2.531)	2.332	5				
310	4.360			321	2.523						
0Ī1	4.310)	(211)	10	600	2.497	2.498	86				
111	4.308	4.311	38	230	2.467	2465]	5				
201	4.237	4.245	14	520	2.464	2.403	5				
3 1 0	4.007	4.004	18	130	2.458	<u> </u>	_				
111	3.994			321	2.457						
21 I	3.989			610	2.439)						
201	3.869			321	2.438	2.436	2				
011	3.841	3.842	5	501	2.434						
020	3.796			I 0 2	2.407		_				
120	3.763			511	2.402)	a (a))					
Ī 1 1	3.752			002	2.399	2.401	4				
400	3.745	3,746	43	112	2.394		_				
111	3.691	3.693	10	131	2.387		_				
301	3.647	_		012	2.376)	a am 1	-				
170	3 602	3.604	10	031	2.366	2.371	1				
211	3,526))		5 2 Ī	2.356	j					
311	3 520	3.524	36	202	2.354						
220	3 519			212	2.353	2.353 }	15				
410	3 488			231	2.349	}					
711	3 466	3 466	11	330	3 246						
211	3 377	3 373	76	230	2.334						
301	3 298	5.575		102	2.332						
270	3 267	3 267	83	511	2.325	2.324	30				
410	3 243	5.201		601	2.312))					
121	3 205	3 209	19	511	2.311						
071	3 180	3 178	18	610	2.310	2.308 }	52				
320	3 165	5.170		611	2,308						
320	3,105	3 105	100	112	2.301	_ ,	_				
401 211	3.006	5.105		131	2.289		_				
211	2 001			471	2.269						
2 Z I 2 T 1	3.091	3 059	16	313	2.260)	١					
	3.055	5.055		3312	2,259	2.259	3				
411	3.030			421	2.257	[2				
500	2.024 2.006 1)		520	2.253	_ ,					
211	2.790	2.996 }	32	302	2.252		_				
211	2.770 J	1		Z 2 1	2.237						
510	2.090	2.889	35	202	2.221		<u> </u>				
510	<u></u>)	J		202							

DÉPOUILLEMENT D'UN DIFFRACTOGRAMME DE (NH4),SiP4O13

h k l	d_{calc}	d_{obs}	Ι	h k l	d_{calc}	d_{obs}	Ι
3 2 I	2.875			012	2.208		
401	2.818	<u> </u>	-	1 12	2,205		
021	2.808)	2.803 }	20	430	2.192		
420	2.798			212	2.185	_	
221	2.787	_ `		620	2.180))	
121	2.765	2.766	4	330	2.178	2 175	10
Ī 2 1	2.755	_		122	2.177	2.175	19
411	2,728	2.728	10	231	2.173)	

TABLEAU 1 (continued)

FIG. 1. Représentation schématique de l'anion plan SiP₄O₁₃²⁻. Les tétraèdres PO₄ des groupements tétrapolyphosphates sont représentés par des carrés; le silicium par un cercle noir.

facilement perpendiculairement à la direction \vec{a} .

Quelques composés isotypes de $(NH_4)_2$ -SiP₄O₁₃ sont décrits (3).

Bibliographie

- 1. A. DURIF, M. T. AVERBUCH-POUCHOT, ET J. C. GUITEL, Acta Crystallogr., à paraître.
- 2. F. LIEBAU, Bull. Soc. Fr. Minér. Cristallogr. 94, 239 (1971).
- 3. M. T. AVERBUCH-POUCHOT ET A. DURIF, J. Appl. Crystallogr., à paraître.